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ON MOTION OF A SYMMETRIC GYROSTAT 
IN A NEWTONIAN FORCE FIELD'  

R. S. S U L I K A S H V I L I  

Tbilisi 

(Received 21 March 1996) 

A spherical cavity in a sphere-shaped gyrostat contains a spherical rotor, which is rotating at a constant angular velocity relative 
to the outer sphere. The centres of the outer sphere, the cavity and the rotor coincide. Attached to the outer sphere are identical 
point masses, placed at the vertices of an octahedron. A study is presented of the influence of the rotation of the rotor on the 
existence and stability of steady motions of the gyrostat about its mass centre in the Newtonian field of a fixed attracting centre. 
Interest centres on motions in which the radius vector of the gyrostat centre and the gyrostatic moment are coUinear. It is shown 
that the existence of a gyrostatic moment may essentially modify the stability properties of the steady motions discovered. 
© 1998 Elsevier Science Ltd. All rights reserved. 

1. P O T E N T I A L  E N E R G Y .  E Q U A T I O N S  O F  M O T I O N .  
F I R S T  I N T E G R A L S  

Let  Oxlx2x3 be a system of  coordinates rigidly attached to the gyrostat in such a way that the vertices of  the octahedron 
at which the masses m are concent ra ted  have the following coordinates  [1]: A1 = (1, 0, 0)a, Az = (-,4, 0, 0)a, 
h 3 = (0, 1, 0 ) a , a  4 = (0, - 1, 0)a, As  (0, 0, 1)a, A6 = (0, 0, - 1)a. 

We shall assume that  the moment  of  inertia of  the sphere is I ,  and the gyrostatic moment  vector  has the form 
K = (kl, k2, ks). Then,  if the body is moving in the Newtonian field of  a fixed attracting centre  N of  mass M, the 
potent ia l  energy is 

1 = - f m M ~ , [ R  2 + 2 Ra(3", e i ) + a 2 ] - ~  (1.1)  v = - f , , a v / E  ____, 
I NA i I 

----' I -'---~ ! - - - *  
R=I NOI,  y = ( 3 ' 1 , 3 ' 2 , Y 3 ) = - ~  NO, e i =(eli'e2i'e3i)=--OAia 

The equations of  mot ion may be writ ten as 

d(l¢o+ K) 
dt  

d3" =3'  x¢o; OU = ( / ¢ o + K ) x o ~ + 3 " x U . t ,  - ~ t  / = I s + / p ;  UI =-~1J (1.2) 

where I v is the central moment  of  inertia of the system of  point masses. I f  the gyrostatic moment  vector K is constant, 
then, since the inert ia  tensor  I is spherical,  the equations of motion may be writ ten as 

d / t  = (I¢0 + K)  x to  +3" x U,t, "-~-tt = 3" x ¢o 

Equat ions  (1.2) admit  of  three first integrals: the energy integral Z0 = (I¢o, to)/2 + U(3') = h the project ion of  
2 the kinetic angular  momen tum on the 3' axis Z1 = (10o + K, 3') = P~,, and a geometr ic  integral Z 2 = 3' = 1. One  

first integral is missing for the equat ions of  motion to be integrable. 

2. S T E A D Y  M O T I O N S  

We consider  the set of  s teady motions  of  the gyrostat. It  is defined as the set of  all critical points of  the energy 
integral at a common level of  the integrals Z1 and Z2. Let  

w~,~ =Zo - ~.(zj - p~,) +-}~t(3" 2 - l )  

where ~, and p. are Lagrange multipliers.  
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Then the set of steady motions is found from the system of equations 

3Wx'v" = Ito-MV =0,  °3wx'v" = - X ( I t a + K ) + U  7 +l.tV = 0  
~to 3V 

~ - - a w x *  3wx.a~t 1 o-----:-- = -(zj - t,. ) = o, = (v2-1)=o 

(2.1) 

By the first relation in (2.1), m = BT, and the steady motions are rotations at constant angular velocity X. By the 
second and fourth relation of (2.1), we have 

-;L(MV + K) + U.~, + l.tV = 0, V 2 - 1 = 0  (2.2) 

Thus 

rt = X[Xt(V)+(K,v)]- (v,U v) 

where, by the third relation of (2.1) 

XCICv)+CK,v) = P v 

Consequently 

X = (Be - ( K ,  T))//(7) 

where I(T) = I1~ + I2~ + I3~3 is the moment of inertia of the body relative to the 7 axis. Then, by (2.2) 

[Pv -(K,v)] 2 Pv 
12(,,/) IV - ( K ' v )  K+U~ +gV =0  I(V) (2.3) 

In other words, the steady motions are determined as critical points of the effective potential 

[P~ • •K•••• • 1 
W~t = ~-UCv)+ ~,-BCv 2 -1)  (2.4) 

2t(v) z ;  

In the general case, it is quite difficult to determine all the solutions of system (2.2), (2.3) for the potential (1.1). 
We will look for solutions in which the vector K is collinear with the vector y + K = kT. Then, by (1.1), the equation 
for the steady motions may be written as 

- ( v , U ~ ) v  + Uv = 0 

This equation coincides with the equations for steady motions in the case of a vanishing gyrostatic moment. 
Consequently, if the condition K =/¢y holds in steady motions of the gyrostat, the axes of rotation coincide with 
those of a single rigid body in the case of a vanishing gyrostatic moment; hence [1] there exist only rotations whose 
axes pass either through a vertex of the octahedron or through the centre of one of its faces. 

Analogous results are valid for any other regular polyhedra with equal masses at the vertices. 

3. S T A B I L I T Y  O F  S T E A D Y  M O T I O N S  

To investigate the stability of the steady motions we have found, we will investigate the second variation of the 
function'Wtt over the linear manifold 

8zl = (v, By) = 0 

as to whether it is of fixed sign. 
We will consider motions in which one vertex of the body faces the attracting centre. One such motion corresponds 

to the orientation 7 = (0, 0, 1). Then 

~}Z I = 0  ¢:} ~( 3 =0, 2~2W1~ =~[ (~1)  2 +(8"/2) 2 ] 

6fmMRta 2 [ 1 1 ] P v k - k  2 
(R2 + a 2 ) ~  fmMRa. + >0  x =  IR+al 3 IR-a l  3 I 
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We know [2] that when K = 0 and R > a the motion is stable in the secular sense. However, if I K I is sufficiently 
large, both Poincar6 coefficients become negative and the instability degree is equal to two. 

There exist motions such that 

v =(Lt,o)/4~=~,,_2 

In these motions the body turns one of  its edges to the attracting centre. Then 

~Z- I =0¢=> {1~y : I~[i +i~' 2 =0}, 2a2Wtt =xlO~'l)2 +x30~Yy3) 2 

and the stability conditions are 

There exist motions such that 

Pvk-k 2 OU(~q_2) ~l = ~2U(~/I-2) "1" ~ >0 

¢32U(YI-2) PYk-k2 ~2 "aU(~'l-2) >0 
~3 = ~ ]  ~ 1 ~ 3  

v]-3 = 0 , I ,0 /43  

I n  these motions the body turns one of its faces to the attracting centre. Then 

SZi = 0 ¢~ {~Y~' : ~ ' l  + ~ ' 2  +5~'3 = 0 }, 282W~=3(A-B)[(~t)2+~yyt&t2+(Sy2) 2 ] 

~2U(~/I_ 3) "{" PV k - k 2  l OU(~tl_3) B= ~2U(~/1-3) t (2P¥ - k )  2 
A .... c3"/2 / ~ "~  o~'l ' Oyl~g 2 3/  

I fA - B > 0, the motion is stable in the secular sense; ifA - B < 0, both Poincar6 coefficients are negative and 
the instability degree is two. 

It has been shown [2] that when K = 0 the number A - B is negative if R > 0 and the instability degree of the 
corresponding motion is two. However, there is a region in the space (Pv, K) in which this number is positive. 
Motions corresponding to this region turn out to be stable in the secular sense. 
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